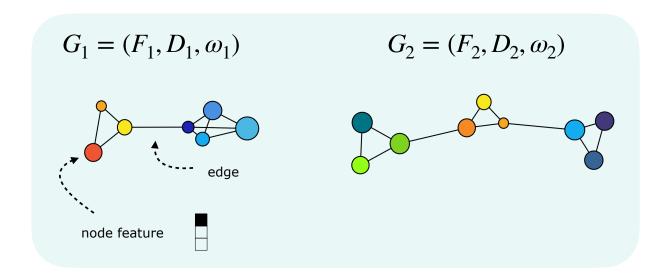
Unsupervised learning for Optimal Transport plan prediction between unbalanced graphs

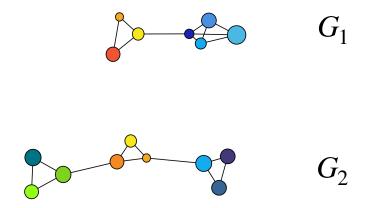
Sonia Mazelet, Rémi Flamary, Bertrand Thirion

MIND meeting - 01/07/2025

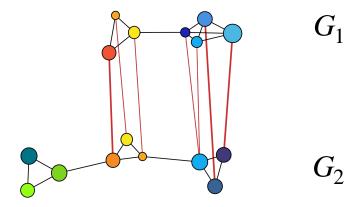
Graphs modeled as probability distribution, characterized by their geometry (adjacency matrix, shortest path distance matrix...), node features and node weights.



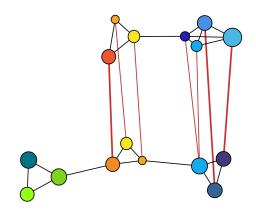
Goal: given a pair of graphs, find a matching between the nodes that preserves the graph geometry, node features and discards nodes that do not have a good matching.



Goal: given a pair of graphs, find a matching between the nodes that preserves the graph geometry, node features and discards nodes that do not have a good matching.

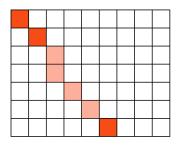


Goal: given a pair of graphs, find a matching between the nodes that preserves the graph geometry, node features and discards nodes that do not have a good matching.



optimal transport plan P:

 $P_{i,j}$ = mass transported from $n_1(i)$ to $n_2(j)$



Optimal transport distance between graphs

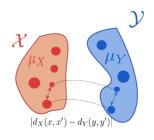
Fused Unbalanced Gromov Wasserstein (FUGW) optimal transport (OT) loss [Thual et al., 2022]

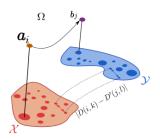
$$\mathsf{L}^{\alpha,\rho}(G_{1},G_{2},\mathbf{P}) = (1-\alpha)\sum_{i,j=1}^{n_{1},n_{2}} \left\| \left(\mathbf{F}_{1}\right)_{i} - \left(\mathbf{F}_{2}\right)_{j} \right\|_{2}^{2} \mathbf{P}_{i,j} + \alpha \sum_{i,j,k,l=1}^{n_{1},n_{2},n_{1},n_{2}} \left| \left(\mathbf{D}_{1}\right)_{i,k} - \left(\mathbf{D}_{2}\right)_{j,l} \right|^{2} \mathbf{P}_{i,j} \mathbf{P}_{k,l} + \rho \left(\mathsf{KL}(\mathbf{P}_{\#1} \otimes \mathbf{P}_{\#1} \mid \omega_{1} \otimes \omega_{1}) + \mathsf{KL}(\mathbf{P}_{\#2} \otimes \mathbf{P}_{\#2} \mid \omega_{2} \otimes \omega_{2})\right).$$

match nodes with similar node features

preserve local geometry

discard nodes that do not have a good match





$$G_1 = (F_1, D_1, \omega_1) \qquad G_2 = (F_2, D_2, \omega_2)$$

Optimal transport distance between graphs

Fused Unbalanced Gromov Wasserstein (FUGW) optimal transport (OT) loss [Thual et al., 2022]

$$\mathsf{L}^{\alpha,\rho}(G_{1},G_{2},\mathbf{P}) = (1-\alpha)\sum_{i,j=1}^{n_{1},n_{2}} \left\| \left(\mathbf{F}_{1}\right)_{i} - \left(\mathbf{F}_{2}\right)_{j} \right\|_{2}^{2} \mathbf{P}_{i,j} + \alpha \sum_{i,j,k,l=1}^{n_{1},n_{2},n_{1},n_{2}} \left| \left(\mathbf{D}_{1}\right)_{i,k} - \left(\mathbf{D}_{2}\right)_{j,l} \right|^{2} \mathbf{P}_{i,j} \mathbf{P}_{k,l} + \rho \left(\mathsf{KL}(\mathbf{P}_{\#1} \otimes \mathbf{P}_{\#1} \mid \omega_{1} \otimes \omega_{1}) + \mathsf{KL}(\mathbf{P}_{\#2} \otimes \mathbf{P}_{\#2} \mid \omega_{2} \otimes \omega_{2})\right).$$

match nodes with similar node features

preserve local geometry

discard nodes that do not have a good match

FUGW distance: $\mathsf{FUGW}^{\alpha,\rho}(G_1,G_2) = \min_{P \geq 0} \mathsf{L}^{\alpha,\rho}(G_1,G_2,\mathbf{P})$

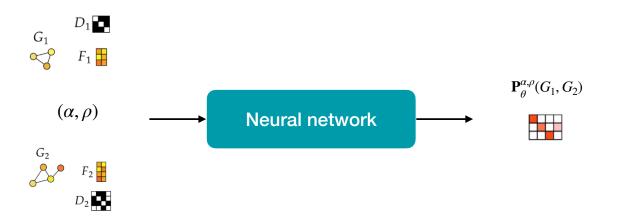
Solve the OT problem: batch coordinate descent with complexity $O(kn^3)$ for k the number of iterations and n the number of graph nodes.

→ unscalable for large graphs

Predicting FUGW plan

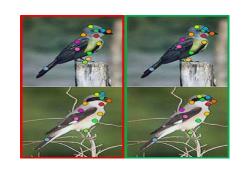
Goal: learn to predict FUGW plan $\mathbf{P}_{\theta}^{\alpha,\rho}(G_1,G_2)$ for all graph pairs $(G_1,G_2)\sim \mathcal{D}$ and parameters $(\alpha,\rho)\sim \mathcal{P}$.

Method: Neural Network based cross attention and Graph Convolutional Networks that predicts OT plans.

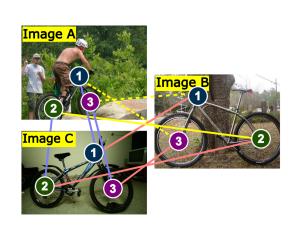


Training a graph matching neural network

Most graph matching neural network are trained in a supervised way [Wang et al., 2019][Sarlin et al. 2020][Zanfir et al. 2020] \rightarrow ground truth correspondences are hard (if not impossible) to compute.

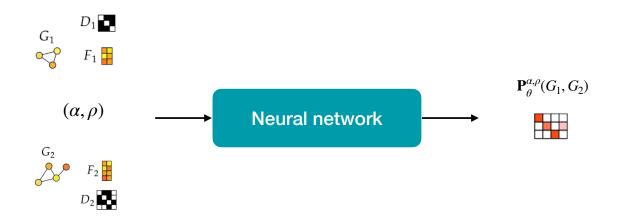


Methods trained in a unsupervised learn to match two copies of the same graph [Liu et al. 2022], or learn to minimize a criterion that is domain specific [Tourani et al. 2024].

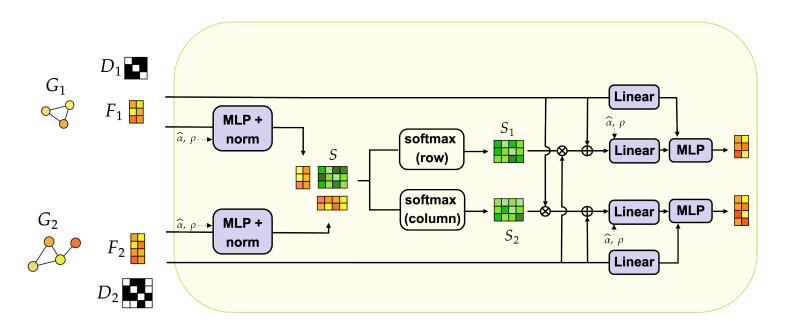


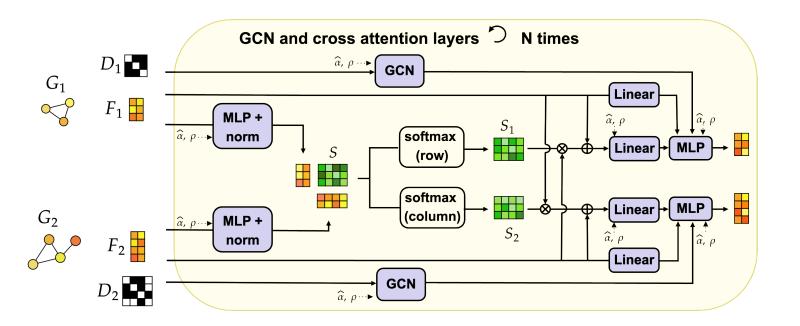
Predicting FUGW plan

Method: Neural Network based cross attention and Graph Convolutional Networks that predicts OT plans.



$$\textbf{Optimisation problem:} \quad \min_{\theta} \mathbb{E}_{G_1,G_2 \sim \mathcal{D},\alpha,\rho \sim \mathcal{P}} \left[\mathsf{L}^{\alpha,\rho}(G_1,G_2,\mathbf{P}^{\alpha,\rho}_{\theta}(G_1,G_2)) \right] \qquad \longrightarrow \quad \text{unsupervised}$$



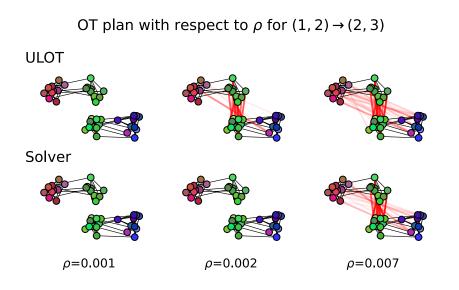


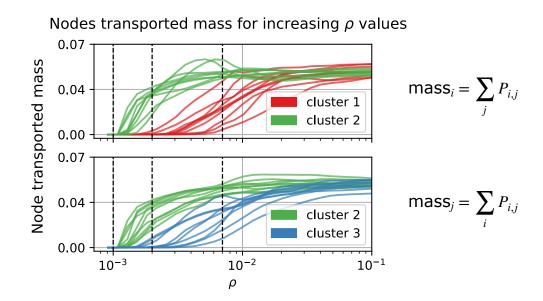
Unbalanced learning of Optimal Transport plans (ULOT)



Complexity: $O(n^2)$ for n the number of graph nodes

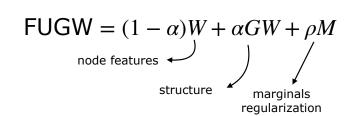
Results on simulated graphs





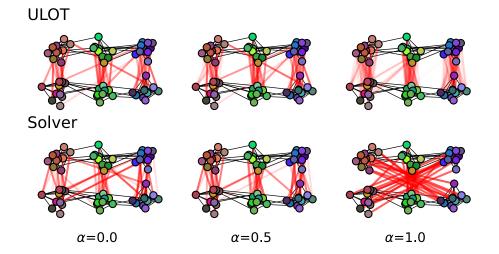
ULOT trained on a dataset of Stochastic Block Model (SBM) graphs.

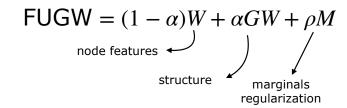
Predicted plans visualized on a pair of SBM graphs with one shared cluster: plans are similar to plans computed with classical solver and sometimes even better.



Results on simulated graphs

OT plan with respect to α for $(1, 2, 3) \rightarrow (1, 2, 3)$



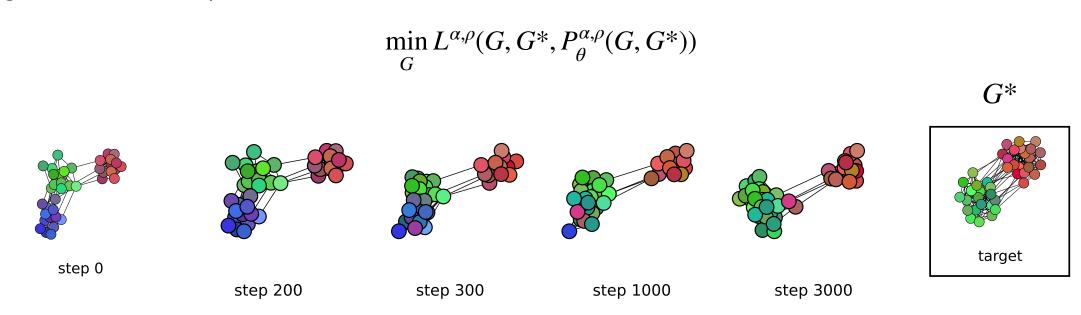


Predicted plans visualized on a pair of SBM graphs with three shared cluster: plans are similar to plans computed with classical solver.

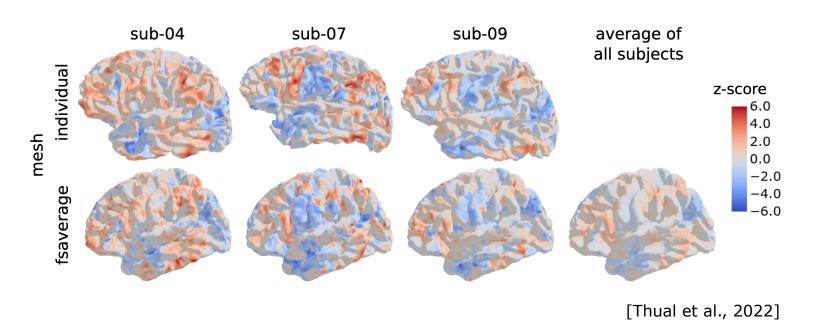
For $\alpha = 1$ (graph structure only), ULOT pairs clusters correctly while the solver cannot differentiate the 1st and 3rd.

Application: minimizing functionals of the ULOT plan

ULOT transport plan is fully differentiable so we can minimize functionals of the plans and visualize the gradient descent steps



Application on brain alignment



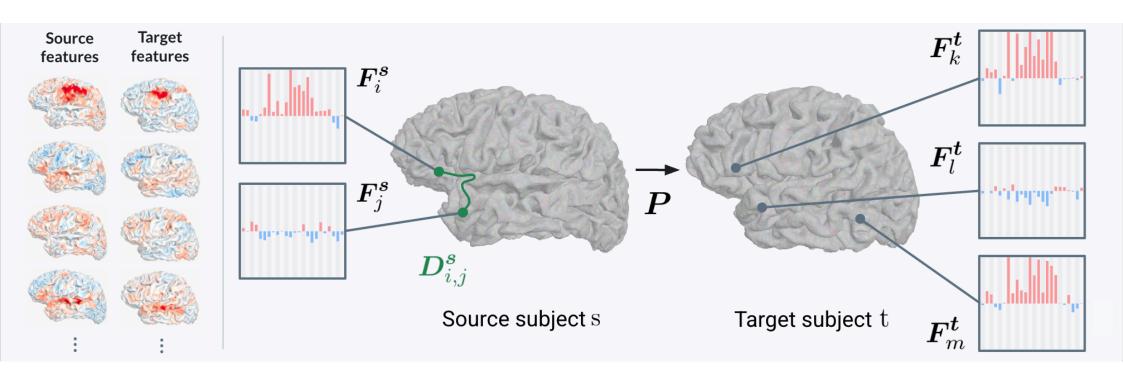
High inter subject variability (in terms of brain geometry or functional signatures) prevents generalization of observations made on a group of subjects.

Current methods: map the data to a common template, resulting in loss of detail.

FUGW for brain alignment

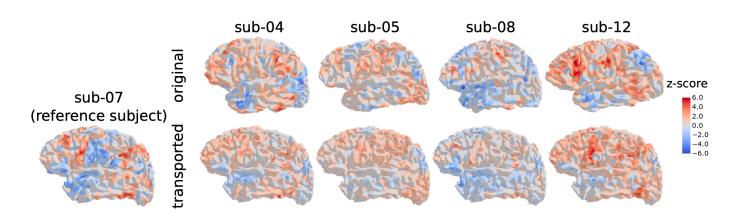
[Thual et al., 2022]: Brain alignment with FUGW transport plan.

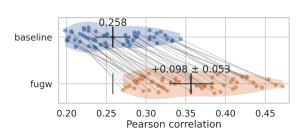
Graphs constructed from the brain surface geometries and fMRI activations for different tasks from the IBC dataset, 1000 nodes.



Results

Transporting individual maps onto a reference subject. High correlation gains between the source and target contrasts after FUGW alignement



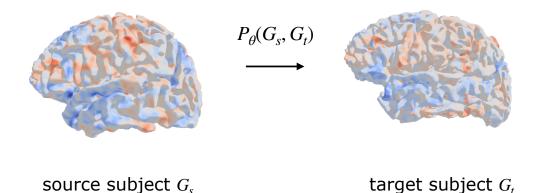


Limitations

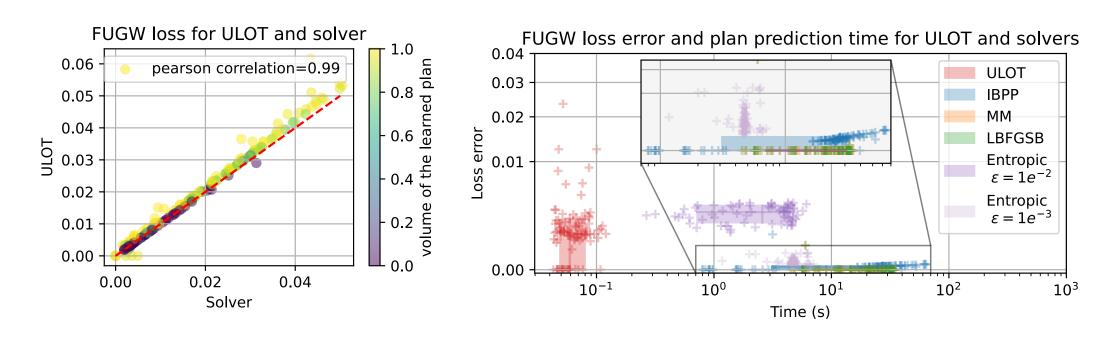
Computational time: 4 minutes for aligning one pair with 10k vertices on a single GPU. Limits applications such as computing barycenters, or computing alignments on large populations.

Choice of FUGW hyper parameters: hyper parameters highly influence the transport plan, and cannot be finely tuned because of high computational time.

Proposed method: used ULOT to align brains.

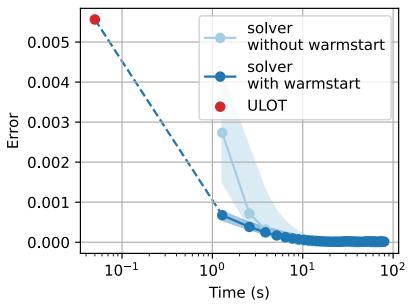


Applications on fMRI data



ULOT predicted plans with low error compared to solvers, and up to 100 times faster: allows extensive parameter selection and scalability to large graphs.

ULOT transport plan as warm start to solvers



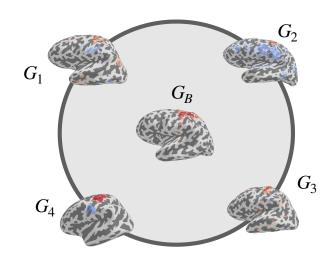
In cases where high precision plans are needed ULOT can be used as a warm start to solvers for faster convergence.

Future work on fMRI data

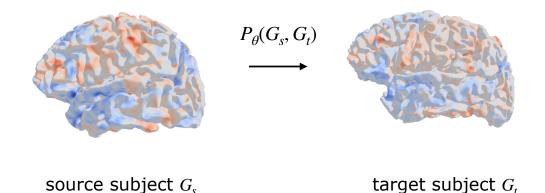
Fast and scalable barycenter computation: barycenter computation requires to solve many FUGW problems, which can be solved efficiently

with ULOT

fMRI activation prediction: match results obtained by [Thual et al., 2022] and scale to higher resolution graphs



$$G_B = \arg\min_{G} \sum_{i=1}^{n} FUGW(G, G_i)$$



Conclusion

- Efficient method for transport plan prediction between graphs with low error and up to 100 times faster than classical solvers.
- Enables FUGW hyper parameter selection, and applications that involve computing many plans (barycenters, minimization of functionals of the transport plan).
- Applications on fMRI dataset.
- Limitations and future work:
 - transport plan error can still be a problem in some applications where high precision is needed.
 - applications on neural dataset is limited because of the small size of datasets: need to investigate further data augmentation techniques.